SSC CGL Tier - II Mathematics Exam. Practice Set

Answers with Explanation

1. (c)
2. (c) L.C.M. of $3,4,6=12$

$$
\begin{aligned}
& (9)^{1 / 3} \Rightarrow 9^{4 / 12} \\
& \Rightarrow \sqrt[12]{9^{4}}=\sqrt[12]{6561} \\
& (20)^{1 / 4} \Rightarrow 20^{3 / 12} \\
& \sqrt[12]{20^{3}}=\sqrt[12]{8000} \\
& (25)^{1 / 6}=25^{2 / 12} \\
& =\sqrt[12]{25^{2}}=\sqrt[12]{625} \\
& =\sqrt[6]{25}<\sqrt[3]{9}<\sqrt[4]{20}
\end{aligned}
$$

3. (b) take $n=7$, because $4 \times 1+3=7$

So, $2 \mathrm{n}=14$, the remainder will be $=2$
4. (b) We need the next instances when the signals light up together.
That means the Least Common Multiple (LCM) of $3,4,8,10,12$
3,4 divide 12 so neglect them.
\therefore They light up together after 2 hours
After starting, they light up together $1^{\text {st }}$ time in 2 hours.

Then $2^{\text {nd }}$ time in $2+2=4$ hours.
Then $3^{\text {rd }}$ time in 6 hours.
And 4^{h} time in 8 hours.
5. (a) $\mathrm{N}=$ H.C.F. of (4665-1305), (6905-4665) and $(6905-1305)=$ H.C.F. of 3360,2240 and $5600=1120$.
Sum of digits in $\mathrm{N}=(1+1+2+0)=4$
6. (d) L.C.M. of $6,9,15$ and 18 is 90 .

Let required number be $90 k+4$, which is multiple of 7 .
Least value of k for which $(90 k+4)$ is divisible by 7 is $k=4$.
\therefore Required number $=(90 \times 4)+4=364$.
7. (c) $\Rightarrow \frac{3}{\frac{963}{999}}+\frac{2}{\frac{654}{999}}$

ख्याजिएरिय

$$
\Rightarrow 999\left[\frac{1}{321}+\frac{1}{327}\right]=999\left[\frac{327+321}{321 \times 327}\right]
$$

$=\frac{(1000-1) 648}{321 \times 327}$
$=\frac{(1000-1) 72}{107 \times 109}=\frac{71928}{11663}$
कुणापि氏न्य
8. (b)
9. (d)
10. (c) Let first no. be (x)

There are 44 odd nos.
Total $=x+(x+2)+(x+4)+\ldots \ldots+(x+86)$
TOTAL $=44 \mathrm{x}+2[1+2+3$
.+43]
$=44 \mathrm{x}+(2 \times 43 \times 44) / 2$
Average $=(44 \mathrm{x}+43 \times 44) / 44=144$
$\mathrm{x}=101$
Largest no. $=(101+86)=187$
11. (d) No. of students $=x$ and avg. weight $=y$
$\frac{x y+50}{x+1}=y+1$
$x+y=49$
$\frac{x y+50+50}{x+2}=y+1.5$
$1.5 x+2 y=97$
$y=47$
12. (c) Total number of passengers $=10 \times 20=200$ In 9 compartments the total number of passengers
$=12+13+14+15+16+17+18+19$
$+20=144$
So, the number of passengers in 10th coach

$$
=200-144=56^{1}
$$

13. (c) $52=\frac{20 \times 80+25 \times 31+\mathrm{x} \times 55}{100}$
$5200=1600+775+\mathrm{x} \times 55$
$5200-2375=55 \times \mathrm{x}$
$55 \mathrm{x}=2825$
$\mathrm{x}=\frac{2825}{55}$
$=51.3636$

$$
\cong 51.4
$$

ख्याजिएরি
14. (a) Let the present ages of Sameer and Anand be $5 x$ years and $4 x$ years respectively.
Then, $\frac{5 \mathrm{x}+3}{4 \mathrm{x}+3}=\frac{11}{9}$
$\Rightarrow 9(5 x+3)=11(4 x+3)$
$\Rightarrow 45 x+27=44 x+33$
$\Rightarrow 45 x-44 x=33-27$
खुप्विस
$\Rightarrow x=6$.
Anand's present age $=4 x=24$ years.
15. (a) Let the present ages of mother and son be x years and $(45-x)$ years respectively.
Then, $(x-5)(45-x-5)=4(x-5)$
$\Rightarrow 40-\mathrm{x}=4$
$\Rightarrow \mathrm{x}=36$
The present ages of mother and son are 36 yrs \& 9 yrs. respectively.
16. (a) Let the four parts into which 3150 is divided are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .
$\Rightarrow \mathrm{a} / 2=\mathrm{b} / 3=\mathrm{c} / 4=\mathrm{d} / 12=\mathrm{k}$
Then $\mathrm{a}=2 \mathrm{k}, \mathrm{b}=3 \mathrm{k}, \mathrm{c}=4 \mathrm{k}$ and $\mathrm{d}=12 \mathrm{k}$
As $a+b+c+d=3150$
$\Rightarrow(2 \mathrm{k}+3 \mathrm{k}+4 \mathrm{k}+12 \mathrm{k})=3150$
$\Rightarrow 21 \mathrm{k}=3150$
खुাঙ্ভির্ज
$\Rightarrow \mathrm{k}=150$
Hence the four parts are 300, 450, 600, 1800
So, the largest part is 1800
17. (b) $50 \times 6 x+100 \times 3 x+150 \times 2 x=4500$
$900 x=4500$
$\mathrm{x}=5$
So, weekly wages paid to man, a woman and a child 210,105 and 70 rupees.
18. (a) $4 x+8 x+17 x+34+38+21=8793$
$29 x=8793-93$
$29 x=8700$
$\mathrm{x}=300$
Priya's Share $=300 \times 17+21=5121$
19. (a)
20. (d) $x-\frac{x}{5}-\frac{4 x}{5} \times \frac{5}{100}-120=1400$
$\mathrm{x}=2000$
Expenditure on transport $=\frac{1}{25} \times 2000=80$ Rs.
21. (c)

Old	New	
Price $\rightarrow 100$	75	
4	3	
Consumption	price	$) \rightarrow 3: 4$

(4-3)r $\rightarrow 2$ dozen
$1 \mathrm{r} \rightarrow 2$ dozen
$3 \mathrm{r} \rightarrow 6$ dozen

Original Rate $=\frac{162}{6}=27$ Rs.
22. (b)

खुप्ञिए
23. (a) Let total employee in Tata motors $=100$

No of female employees $=70$ and
No of male employees $=30$
No of female employees earn more than 35000
$=70-30 \times \frac{60}{100}=52$
No of female employees earn 35000 or less
$=70-52=18$
Required fraction $=\frac{18}{70}=\frac{9}{35}$
24. (c) No of trees two years ago
$=17640 \times \frac{100}{105} \times \frac{100}{105}=16000$
25. (a)
26. (d) M.P. $=$ Rs. 100

खुাঙ্ভির্জ
S.P. $=77$
C.P. $=\frac{77 \times 100}{63}=\frac{1100}{9}$

New S.P. $=77 \times \frac{125}{100}$
Profit or loss
$=77 \times \frac{5}{4}-\frac{1100}{9}=\frac{(3465-4400)}{36}=-\frac{935}{36}$
loss $=\frac{\frac{935}{36}}{\frac{1100}{9}} \times 100=21.25 \%$
27. (a) Let the CP of a pen $=$ Rs. x and that of a book $=$ Rs. y.
$\therefore 15 y-5 x=700$
$\Rightarrow 3 y-x=140$
And $2 y+x=260$ \qquad
From equations (i) and (ii),

खुप्ञिय

$5 y=400$
$\Rightarrow \mathrm{y}=400 / 5=80$
\therefore Actual Price of the book $=$ Rs. 80
28. (c)

$$
x=\frac{17}{20} \times 60=51
$$

29. (a) Let C.P. of watch $=x$

Profit $\%=\mathrm{x} \%$
$x \times \frac{(100+x)}{100}=96$
खাড্ভির্स
$x^{2}+100 x=9600$
$x^{2}+100 x-9600=0$
$x^{2}+160 x-60 x-9600=0$
$x(x+160)-60(x+160)=0$
$x=60$
New S.P. $=60 \times \frac{220}{100}=132$
30. (d)
31. (b) Let the principal be 100 P
$\therefore 18 \mathrm{P}=\frac{100 \mathrm{P} \times \mathrm{R} \times 2}{100} \Rightarrow \mathrm{R}=9 \%$
\therefore Required CI
$=7000 \times\left[\left(1+\frac{9}{100}\right)^{3}-1\right]$
खुप्रिजर्य
$=7000 \times\left[(1.09)^{3}-1\right]=2065.2$
32. (b) $12 \frac{1}{2} \%=\frac{1}{8}$

Remaining $=1-\frac{1}{8}-\frac{3}{5}=\frac{40-5-24}{40}=\frac{11}{40}$
ATQ
$1674=\frac{x}{8} \times \frac{2 \times 5}{100}+\frac{3 x}{5} \times \frac{6 \times 2}{100}+\frac{11}{40} \times \times \frac{10 \times 2}{100}$
$\mathrm{x}=12000$.
33. (d)
34. (d) Interest on $4500=\frac{4500 \times 5 \times 13}{100}=2925$

Interest on 2nd amount $=5694-2925=2769$
$2769=\frac{\mathrm{P} \times 5 \times 13}{100}$

$P=4260$
35. (b) $\mathrm{P}=\frac{882}{1+\frac{5}{100}}+\frac{882}{\left(1+\frac{5}{100}\right)^{2}}=882\left[\frac{20}{21}+\frac{400}{441}\right]$
$=882\left[\frac{420+400}{441}\right]=1640$
36. (c) From the LCM method,

खुणिए

So, we have total work $=120$
4 day's work by $(A+B+C)=(6+5+4) \times 4$
$=60$
6 day's work by ' C ' alone $=4 \times 6=24$
So, remaining work done by $(B+C)$ in
$=\frac{120-(60+24)}{(5+4)}=4$ days
So, total days $=[4+6+4]=14$ days
37. (b) Work done by A in 1 day $=\frac{1}{40}$ units

Work done by A in 5 days
$=5 \times\left(\frac{1}{40}\right)=\frac{1}{8}$ units
खाড্ভির্स
Remaining work $=1-\frac{1}{8}=\frac{7}{8}$ units
Work done by B in 1 day $=\frac{7}{8 \times 21}=\frac{1}{24}$ units
Work done by both A and B in 1 day $=\frac{1}{40}+\frac{1}{24}=\frac{1}{15}$ unit

Required no. of days $=\frac{1}{\frac{1}{15}}=15$ days
38. (a) Here, $a=4, b=6, n=20, c=6$ and $d=11$ If a men or b women complete a work in n days then time taken by c men and d women to complete the same work
$=\left(\frac{\text { nab }}{\mathrm{bc}+\mathrm{ad}}\right)$ days
$=\left(\frac{20 \times 4 \times 6}{6 \times 6+4 \times 11}\right)$ days $=6$ days.
फाप्仑िर्स

When work is triple then no. of days $=18$ days.
39. (d) Aruna

Ashima

Work done by Aruna in 4 days $=3 \times 4=12$
Work done by Ashima in 18 days $=2 \times 18=36$
Remaining work $=60-(12+36)=12$
Work done by Jamia in 18 days $=12$
Time required by Jamia to complete the work
alone $=\frac{18}{12} \times 60=90$ days

40. (a) Ratio of time taken by a woman, a man and a boy $=8: 6: 12=4: 3: 6$
So, 4 women $=3$ men $=6$ boy
(12 men +12 women +12 boys)
$=(12+9+6)$ men $=27$ men
Let the required number of days be x
$9 \times 6 \times 6=27 \times 8 \times x$
$\therefore \mathrm{x}=1 \frac{1}{2}$
41. (b) Part filled by $(\mathrm{A}+\mathrm{B}+\mathrm{C})$ in 3 minutes
$=3\left(\frac{1}{30}+\frac{1}{20}+\frac{1}{10}\right)=\left(3 \times \frac{11}{60}\right)=\frac{11}{20}$
Part filled by C in 3 minutes $=\frac{3}{10}$
\therefore Required ratio $=\left(\frac{3}{10} \times \frac{20}{11}\right)=\frac{6}{11}$
42. (c) $(\mathrm{A}+\mathrm{B})$'s 1 hour's work $=$
$=\left(\frac{1}{12}+\frac{1}{15}\right)=\frac{9}{60}=\frac{3}{20}$
($\mathrm{A}+\mathrm{C}$)'s 1 hour's work
फ़ाডिएय
$=\left(\frac{1}{12}+\frac{1}{20}\right)=\frac{8}{60}=\frac{2}{15}$
Part filled in $2 \mathrm{hrs}=\left(\frac{3}{20}+\frac{2}{15}\right)=\frac{17}{60}$
Part filled in 6 hrs. $=\frac{17}{60} \times 3=\frac{17}{20}$
Remaining part $=\left(1-\frac{17}{20}\right)=\frac{3}{20}$
Now, it is the turn of A and B and $\frac{3}{20}$ part is filled by A and B in 1 hour.
\therefore Total time taken to fill the tank $=(6+1)$ $\mathrm{hrs}=7 \mathrm{hrs}$.
43. (d) Let the total capacity of the tank is 30 units.

The efficiency of Leakage(Pipe A) will be $=30 / 10=3$

And the efficiency of the leakage (Pipe A) and another Pipe (B) which is filling the tank will be $=30 / 15=2$
Pipe A is emptying at 3 units/hr and when filling pipe B started then the emptying rate will come down to 2 units/hr.
\therefore Filling Pipe B efficiency is $3-2=1$ unit $/ \mathrm{hr}$
Pipe B will be fill the tank in $=30 / 1=30 \mathrm{hrs}$ Filling rate of Pipe B per minute is 4 liter
\therefore Total Capacity of tank will be
$=(4 \times 60) \times 30=7200$ liters
44. (c) Part filled in 2 hours $=2 / 6=1 / 3$

Remaining part $=\left(1-\frac{1}{3}\right)=2 / 3$
($\mathrm{A}+\mathrm{B}$)'s 7 hour's work $=2 / 3$
$(A+B)$'s 1 hour's work $=2 / 21$
C's 1 hour's work
$=\{(\mathrm{A}+\mathrm{B}+\mathrm{C})$'s 1 hour's work $\}-$ \{ (A + B)'s 1 hour's work \}
$=\frac{1}{6}-\frac{2}{21}=1 / 14$
काष्धिर्ज
C alone can fill the tank in 14 hours.
45. (c) Let the speed of train on level terrain $=x \mathrm{~km} / \mathrm{h}$

And mountainous terrain $=(x-10) \mathrm{km} / \mathrm{h}$

$\frac{188}{x}+\frac{111}{x-10}=7$
$\mathrm{x}=47 \mathrm{~km} / \mathrm{hr}$
46. (a)

$10: 30 \mathrm{am}$
After 30 min , A started moving towards B.
Distance travelled by A in 1 hr till 12 pm .
$=20 \times 1=20 \mathrm{~km}$
\therefore Distance remained $=110-20=90 \mathrm{~km}$
Now, Time taken to meet $=\frac{90}{20-15}=\frac{90}{5}=18 \mathrm{hr}$
\therefore They meet on $=12 \mathrm{PM}+18=6: 00$ A.M.
47. (d) $6=\frac{60}{x+y}$
$x+y=10$
ख্যাড্ভির্স
$5=\frac{60}{\frac{2}{3} x+2 y}$
$x+3 y=18$

From (i) \& (ii)
$2 \mathrm{y}=8$
$\mathrm{y}=4 \mathrm{~km} / \mathrm{hr}$
$\mathrm{x}=6 \mathrm{~km} / \mathrm{hr}$
48. (b) Let the speed of bus is 's'
st $=48$ \qquad (i)

ऊुप্ভির্জ
$(\mathrm{s}+4)(\mathrm{t}-1)=48$ \qquad (ii)
$\mathrm{st}+4 \mathrm{t}-\mathrm{s}-4=\mathrm{st}$
Put value of t from (i)
$-s^{2}-4 s+4 \times 48=0$
$\mathrm{s}=12, \mathrm{~s}=-16$
So, speed $=12 \mathrm{~km} / \mathrm{hr}$
49. (c) Selling, price of mixture $=$ Rs .20 per litre

Cost price of mixture $=\frac{100}{125} \times 20$
$=$ Rs. 16 per litre

By the rule of alligation,

So. required ratio $=9: 16$
50. (b) Let the quantity of the wine in the cask originally be x litres.
Then, quantity of wine left in cask after 4
operations $=\left[x\left(1-\frac{8}{x}\right)^{4}\right]$
$\therefore\left(\frac{\mathrm{x}(1-(8 / \mathrm{x}))^{4}}{\mathrm{x}}\right)=\frac{16}{81}$
$\Rightarrow\left(1-\frac{8}{\mathrm{x}}\right)^{4}=\left(\frac{2}{3}\right)^{4}$
$\Rightarrow\left(\frac{\mathrm{x}-8}{\mathrm{x}}\right)=\frac{2}{3}$
$\Rightarrow 3 \mathrm{x}-24=2 \mathrm{x}$
$\Rightarrow \mathrm{x}=24$.
51. (d) Let speed of boat in still water is $x \mathrm{kmph}$ and speed of stream is y kmph.
$\frac{24}{x-y}+\frac{28}{x+y}=6$
$\frac{30}{x-y}+\frac{21}{x+y}=6.5$
From (i) and (ii) we get
$\mathrm{x}=10 \mathrm{kmph}$
$\mathrm{y}=4 \mathrm{kmph}$
52.
(d) Downstream (v) : Upstream (u)

Time $\rightarrow \quad 1 \quad$:
2
When Distance is same then, time $\propto \frac{1}{\text { speed }}$
Speed $\rightarrow 2$:
1

Speed of Boat $=\frac{2+1}{2}=\frac{3}{2}$
Speed of Current $=\frac{2-1}{2}=\frac{1}{2}$
आাড্ভির্स
$\mathrm{S}_{\mathrm{B}}: \mathrm{S}_{\mathrm{C}}=\frac{3}{2}: \frac{1}{2}=3: 1$
53. (a) Speed downstream $=(5+1) \mathrm{kmph}=6 \mathrm{kmph}$.

Speed upstream $=(5-1) \mathrm{kmph}=4 \mathrm{kmph}$.
Let the required distance be $x \mathrm{~km}$.
Then, $\frac{x}{6}+\frac{x}{4}=1$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{x}=12$
$\Rightarrow 5 x=12$
$\Rightarrow x=2.4 \mathrm{~km}$
54. (d)
55. (b)
56. (a) $a \cos 2 \theta+b \sin 2 \theta=c$
$a\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+2 b \sin \theta \cos \theta=c$
$\mathrm{a}\left(1-\tan ^{2} \theta\right)+2 \mathrm{~b} \tan \theta=\mathrm{c} \sec ^{2} \theta$
$\tan ^{2} \theta(c+a)-2 b \tan \theta+(c-a)=0$
roots of equation are $\tan \alpha \& \tan \beta$
$\therefore \tan \alpha+\tan \beta=\frac{2 \mathrm{~b}}{\mathrm{c}+\mathrm{a}} \& \tan \alpha \tan \beta=\frac{\mathrm{c}-\mathrm{a}}{\mathrm{c}+\mathrm{a}}$
57. (d)
58. (b) It's a GP series

$$
S_{\infty}=\frac{a}{1-r}
$$

Here, $\mathrm{a}=1, \mathrm{r}=\sin \mathrm{x}$

$$
\begin{aligned}
& \frac{1}{1-\sin x}=\frac{3 \sqrt{2}}{3 \sqrt{2}-3} \\
& \frac{1}{1-\sin x}=\frac{1}{1-\frac{1}{\sqrt{2}}}
\end{aligned}
$$

$\therefore \sin \mathrm{x}=\frac{1}{\sqrt{2}}$
$\Rightarrow \mathrm{x}=45^{\circ}$
59. (c) $\mathrm{A}+\mathrm{B}=90^{\circ} \Rightarrow \mathrm{A}=90^{\circ}-\mathrm{B}$

खुण্ভির্র
$\Rightarrow \sin \mathrm{A}=\sin \left(90^{\circ}-\mathrm{B}\right)=\cos \mathrm{B}$
Similarly,
$\operatorname{Cos} A=\operatorname{Sin} B, \tan A=\cot B$
$\therefore \sin A \cdot \cos B+\cos A \cdot \sin B-\tan A \cdot \tan B+$
$\sec ^{2} \mathrm{~A}-\cot ^{2} \mathrm{~B}$
$=\cos ^{2} \mathrm{~B}+\sin ^{2} \mathrm{~B}-\cot \mathrm{B} \cdot \tan \mathrm{B}+\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}$
$=1-1+1=1$
60. (b) $\tan (A+B)=\frac{\frac{n}{n+1}+\frac{1}{2 n+1}}{1-\frac{n}{n+1} \times \frac{1}{2 n+1}}$
$=\frac{2 n^{2}+n+n+1}{2 n^{2}+2 n+n+1-n}$
$=\frac{2 n^{2}+2 n+1}{2 n^{2}+2 n+1}=1$
61. (b)
62. (d)
63. (c)
64. (d) $\operatorname{cosec} \theta+\operatorname{cosec}^{2} \theta=1$

फाप्षिएर्य
$\operatorname{cosec} \theta=1-\operatorname{cosec}^{2} \theta$
$\operatorname{cosec} \theta=-\cot ^{2} \theta$
$\cot ^{2} \theta=-\operatorname{cosec} \theta$
$\left(\cot ^{12} \theta-3 \cot ^{10} \theta+3 \cot ^{8} \theta-\cot ^{6} \theta\right)$
$=\left(\cot ^{4} \theta-\cot ^{2} \theta\right)^{3}$
$=\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)^{3}($ from eq (i))
$=1^{3}=1$
65. (a) Max. value of $\sin \theta=1$

So, $\sin ^{3} \theta+2 \sin ^{2} \theta+3 \sin \theta$
$=1+2+3=6$
At $\theta=0^{\circ}, \sin \theta=0$
$\operatorname{Sin}^{3} \theta+2 \sin ^{2} \theta+3 \sin \theta=0$
So, statement (1) is correct.
66. (d)

\Rightarrow Diagonal of innermost square
$=\sqrt{50} \times \sqrt{2}=10 \mathrm{~cm}$
\Rightarrow Diagonal of outermost square
$=10+2.75 \times 8=32 \mathrm{~cm}$
\therefore Side of outermost square
$=\frac{32}{\sqrt{2}}=16 \sqrt{2} \mathrm{~cm}$
67. (c)

In $\triangle \mathrm{BDC}$,

$$
\angle 1=63+x
$$

ख্যাড্ভির্স

In $\triangle \mathrm{AMC}$,
$\angle 2=x+y$
$\mathrm{AM}=\mathrm{AD}$ given
$(\angle 1=\angle 2)$
$63+x=x+y$
$y=63^{\circ}$
$\angle \mathrm{MAC}=63^{\circ}$
2. $\angle \mathrm{MAC}=126$
68. (a)

In right angle $\triangle \mathrm{ABD}$

$$
\mathrm{BD}=\sqrt{32^{2}+24^{2}}=40 \mathrm{~cm}
$$

Now, In $\triangle \mathrm{ABD}$, inradius is given by
$\mathrm{r}=\frac{\mathrm{P}+\mathrm{B}-\mathrm{H}}{2}=\frac{32+24-40}{2}$
कुणाভिएर्य
$\Rightarrow \mathrm{r}=8 \mathrm{~cm}$
$\therefore \mathrm{DR}=(24-8) \mathrm{cm}=16 \mathrm{~cm}$
Also,
From a point D, length of two tangents will be
equal
$\mathrm{DR}=\mathrm{DP}=16 \mathrm{~cm}$
Similarly, for the second circle
$\mathrm{BS}=\mathrm{BQ}=16 \mathrm{~cm}$
\therefore Required length of $\mathrm{PQ}=40-16-16=8 \mathrm{~cm}$
69. (a)

Volume of cylinder $=2464 \mathrm{~cm}^{3}$
$\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right) \mathrm{h}=2464$
$\Rightarrow \frac{22}{7} \times\left(8^{2}-\mathrm{r}^{2}\right) \times 28=2464$
$\Rightarrow \mathrm{r}=6 \mathrm{~cm}$
\therefore Total surface area
$=2 \pi \mathrm{Rh}+2 \pi \mathrm{rh}+2 \pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$
$=2 \pi \mathrm{~h}(\mathrm{R}+\mathrm{r})+2 \pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$
$=2 \times \frac{22}{7} \times 28(8+6)+2 \times \frac{22}{7} \times\left(8^{2}-6^{2}\right)=2640$
70. (c)

ख्या গि४िय
$A B C$ is an equilateral triangle
$\mathrm{AF}=\frac{\sqrt{3} \mathrm{a}}{2}=\frac{\sqrt{3}}{2} \times 54=27 \sqrt{3}$
\therefore In radius $\left(R_{1}\right)=\frac{a}{2 \sqrt{3}}=\frac{54}{2 \sqrt{3}}=9 \sqrt{3}$
$\therefore \mathrm{AP}=\mathrm{AF}-2 \mathrm{R}_{1}$
$=27 \sqrt{3}-9 \sqrt{3} \times 2=9 \sqrt{3}$
Now, $\triangle \mathrm{ADE}$ is also an equilateral triangle
$\mathrm{AP}=\frac{\sqrt{3}}{2} \mathrm{DE}=9 \sqrt{3}$
$\mathrm{DE}=18 \mathrm{~cm}$
In radius of $\triangle \mathrm{ADE}$
$=\frac{\mathrm{DE}}{2 \sqrt{3}}=\frac{18}{2 \sqrt{3}}=3 \sqrt{3} \mathrm{~cm}$
71. (c) $(2 \mathrm{r}-\mathrm{h})=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}$
$(2 r-h)^{2}=h^{2}+r^{2}$

$$
\begin{aligned}
& 4 r^{2}+h^{2}-4 h r=h^{2}+r^{2} \\
& r(3 r-4 h)=0 \\
& 3 r=4 h \\
& \frac{r}{h}=\frac{4}{3}
\end{aligned}
$$

$\frac{\text { Vol of cylinder }}{\text { Vol.of hemisphere }}=\frac{\pi r^{2} h}{\frac{2}{3} \pi r^{3}}=\frac{3 \mathrm{~h}}{2 \mathrm{r}}$

$$
=\frac{9}{8}
$$

72. (c)

फ़ाजिएর
As $\mathrm{PQ}=\mathrm{PS}$
Then $\angle \mathrm{PQS}=\angle \mathrm{PSQ}=32^{\circ}$
$\angle \mathrm{QPS}=116^{\circ}$
As PQRS is a cyclic quadrilateral then $\angle \mathrm{QPS}$ $+\angle \mathrm{QRS}=180^{\circ}$
$\angle \mathrm{QRS}=180^{\circ}-116^{\circ}=64^{\circ}$
$\because \mathrm{RS}$ is the diameter of the circle $\angle \mathrm{RQS}=$ 90°
$\therefore \angle \mathrm{QSR}=180-(90+64)=26^{\circ}$
73. (d)

$\mathrm{OC}=\mathrm{O}^{\prime} \mathrm{D}=7 \mathrm{~cm}$ (radius)
$\mathrm{CD}=48 \mathrm{~cm}$
$\Delta \mathrm{COE} \sim \Delta \mathrm{DO}^{\prime} \mathrm{E}$
$\frac{O C}{O^{\prime} D}=\frac{C E}{D E}=1$
आ m্ভির্ম
In $\triangle \mathrm{COE}$
$\mathrm{OE}^{2}=\mathrm{C}^{\prime} \mathrm{E}^{2}+\mathrm{OC}^{2}$
$=24^{2}+7^{2}=625$
$\mathrm{OE}=25 \mathrm{~cm}$
$\therefore \mathrm{OO}^{\prime}=\mathrm{OE}+\mathrm{EO}^{\prime}=25+25=50 \mathrm{~cm}$
$\therefore \mathrm{AB}=50 \mathrm{~cm}$.

74．（a）
75．（c）As，Area $\mathrm{ABD}=\frac{1}{2}$ area ABC
$\Rightarrow \frac{1}{2} \mathrm{y} \times \mathrm{x}=\frac{1}{2} \times \frac{1}{2} \times(\mathrm{z}+\mathrm{y}) \times \mathrm{x}$
$\Rightarrow \mathrm{y}=\frac{\mathrm{z}+\mathrm{y}}{2} \Rightarrow \mathrm{z}=\mathrm{y}$
Now，$A D=\sqrt{x^{2}+y^{2}}$
$\& w^{2}=x^{2}+(y+z)^{2}$
$w^{2}=x^{2}+4 y^{2}$
$\Rightarrow \mathrm{x}^{2}=\mathrm{w}^{2}-4 \mathrm{y}^{2}$
$\therefore \mathrm{AD}=\sqrt{\mathrm{w}^{2}-3 \mathrm{y}^{2}}$
76．（d）

$$
20=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\
\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3}
\end{array}\right| \quad=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
-5 & 3 & \mathrm{x}^{\prime} \\
0 & 0 & \mathrm{y}^{\prime}
\end{array}\right|
$$

$$
40=\left(3 y^{\prime}-0\right)+\left(0+5 y^{\prime}\right)+0
$$

$y^{\prime}= \pm 5$
and corresponding $\mathrm{x}=7$ or－ 3
Co－ordinates of third point $(7,5)$ or $(-3,-5)$

77．（c）The co－ordinates of the point of division are

$$
=\left(\frac{3 \mathrm{k}-4}{\mathrm{k}+1} \cdot \frac{7 \mathrm{k}+5}{\mathrm{k}+1}\right)
$$

But it lies on y－axis then
$\frac{3 \mathrm{k}-4}{\mathrm{k}+1}=0$
$\mathrm{k}=\frac{4}{3}$
Required ratio is $3: 4$
78．（c）If centroid is at origin then，
$\frac{a+b+c}{3}=0$
$(a+b+c)=0$
Hence，$a^{3}+b^{3}+c^{3}-3 a b c=0$
$a^{3}+b^{3}+c^{3}=3 a b c$
79．（b）Slope of $\mathrm{AB}, m_{1}=\frac{5-5}{4-3}=0$
Slope of AC，$m_{2}=\frac{6-5}{4-3}=1$
$\therefore \tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{0-1}{1+0}\right|=1$
So $\theta=45^{\circ}$

80．（c）Let the coordinate of the moving point P be (h, k) ．
Then，$[\mathrm{h}-(\mathrm{m}+\mathrm{n})]^{2}+[\mathrm{k}-(\mathrm{n}-\mathrm{m})]^{2}$
$[\mathrm{h}-(\mathrm{m}-\mathrm{n})]^{2}+[\mathrm{k}-(\mathrm{n}+\mathrm{m})]^{2}$
$\Rightarrow \mathrm{h}^{2}+(\mathrm{m}+\mathrm{n})^{2}-2 \mathrm{~h}(\mathrm{~m}+\mathrm{n})+\mathrm{k}^{2}+(\mathrm{n}-\mathrm{m})^{2}-$ $2 \mathrm{k}(\mathrm{n}-\mathrm{m})$
$=\mathrm{h}^{2}+(\mathrm{m}-\mathrm{n})^{2}-2 \mathrm{~h}(\mathrm{~m}-\mathrm{n})+\mathrm{k}^{2}+(\mathrm{n}+\mathrm{m})^{2}-$
$2 \mathrm{k}(\mathrm{m}+\mathrm{n}) \Rightarrow-2[\mathrm{~h}(\mathrm{~m}+\mathrm{n})+\mathrm{k}(\mathrm{n}-\mathrm{m})]$
$=-2[\mathrm{~h}(\mathrm{~m}-\mathrm{n})+\mathrm{k}(\mathrm{m}+\mathrm{n})]$
$\Rightarrow \mathrm{mh}+\mathrm{nh}+\mathrm{nk}-\mathrm{mk}=\mathrm{mh}-\mathrm{nh}+\mathrm{mk}+\mathrm{nk}$
$\Rightarrow 2 \mathrm{nh}=2 \mathrm{mk} \Rightarrow \mathrm{nh}=\mathrm{mk}$
\therefore Required locus is $n x=m y$

81．（c）Required ratio $=\frac{\frac{220000}{100} \times \frac{85}{11} \times 7}{\frac{200000}{100} \times \frac{58}{5} \times 3}=\frac{595}{348}$
82．（a）Total population of city 5
$=\frac{\left[\frac{259210}{7} \times 16\right]}{92} \times 100=644000$
खुपाণিির্স
83．（d）City $1=80 \%$ of $250000=200000$
City $2=85 \%$ of $200000=170000$
City $3=78 \%$ of $220000=171600$
City $4=63 \%$ of $300000=189000$
City $5=92 \%$ of $150000=138000$
City $6=58 \%$ of $400000=232000$
So，City $6>$ City $1>$ City $4>$ City $3>$ City $2>$ City 5
84．（d）Average amount of interest paid by the Company during the given period：
$=$ Rs．$(23.4+32.5+41.6+36.4+49.4) / 5$
＝Rs． 36.66 lakhs．
85．（b）Required percentage

$$
=\frac{(83+108+74+88)}{(342+324+336+420)} \times 100=24.824 \%
$$

86．（c）Required percentage：
$[(288+98+3.00+23.4+83)]$
$(420+142+3.96+49.4+98)] \times 100 \%$
$=69 \%$（Approx．）
87．（c）Average production $=\frac{1200}{6}=200$
In 2012， 2013 and 2014 the production is more than 200
88．（b）Required ratio
ख्याগ্ভির্ম

$$
\begin{aligned}
& =\frac{100+125+200+225+275+275}{175+150+125+175+175+225} \\
& =\frac{1200}{1025}=\frac{48}{41}
\end{aligned}
$$

89. (b)

$\tan \theta=\frac{\mathrm{b}}{\mathrm{a}}$
$\tan 2 \theta=\frac{\mathrm{b}+\mathrm{x}}{\mathrm{a}}$
$\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{b+x}{a}$
$\frac{2 \frac{b}{a}}{1-\frac{b^{2}}{a^{2}}}=\frac{b+x}{a}$
$\frac{2 b \cdot a^{2}}{a^{2}-b^{2}}=b+x$
$\mathrm{b}\left[\frac{2 \mathrm{a}^{2}-\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}}\right]=\mathrm{x}$
$b\left[\frac{b^{2}+a^{2}}{a^{2}-b^{2}}\right]=x$
90. (a)
91. (d) $\alpha+\beta=\frac{-b}{a}, a \beta=\frac{b}{a}$

$$
\begin{aligned}
& \frac{a}{\beta}=\frac{p}{q} \\
& p=k \alpha, q=k \beta \\
& \sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{b}{a}}=\frac{p+q}{\sqrt{p q}}+\sqrt{\frac{b}{a}} \\
& =\frac{-\frac{b}{a}}{\sqrt{\frac{b}{a}}}+\sqrt{\frac{b}{a}}=\frac{\frac{-b}{a}+\frac{b}{a}}{\sqrt{\frac{b}{a}}}=0
\end{aligned}
$$

92. (d) Given equation

$$
\begin{aligned}
& x^{2}+x+1=0 \\
& \alpha+\beta=-1 \text { and } \alpha \beta=1 \Rightarrow \beta=\frac{1}{\alpha}
\end{aligned}
$$

$\therefore \alpha+\frac{1}{\alpha}=-1$
$\Rightarrow \alpha^{3}+\frac{1}{\alpha^{3}}=(-1)^{3}-3(-1)=-1+3=2$
$\Rightarrow \alpha^{3}+\frac{1}{\alpha^{3}}=2$
$\Rightarrow \alpha^{3}+\beta^{3}=2$
\rightarrow The equation can be written as
$\mathrm{x}^{2}-$ (sum of roots) $\mathrm{x}+$ product of roots $=0$
$\Rightarrow \mathrm{x}^{2}-(2) \mathrm{x}+1=0$
$\Rightarrow \mathrm{x}^{2}-2 \mathrm{x}+1=0$
93. (a)

खुप्ञिए
$\mathrm{DH}=\mathrm{FH}=\mathrm{DF}=16 \sqrt{2}$
$\Delta \mathrm{DFH}=\frac{\sqrt{3}}{4} \times(16 \sqrt{2})^{2}$
$=\frac{\sqrt{3}}{4} \times 16 \sqrt{2} \times 16 \sqrt{2}$
$=64 \times 2 \sqrt{3}=128 \sqrt{3}$
Area of $\triangle \mathrm{DEF}=\Delta \mathrm{DEH}=\Delta \mathrm{EFH}$
$=\frac{1}{2} \times 16 \times 16=128$
Total surface area of pyramid $=128(3+\sqrt{3})$
94. (b)

Mark's Gap	No. of Students
$0-10$	30
$10-20$	22
$20-30$	13
$30-40$	16
40 above	26

No. of Students b/w 20 to 40 marks $=29$

धुणाज्जित

95. (c) Percentage decrease $=\frac{32-27}{32} \times 100=15 \frac{5}{8} \%$
96. (b)
97. (b) $\mathrm{a}^{2}+\frac{1}{4 \mathrm{a}^{2}}-1=9$
$a^{2}+\frac{1}{4 a^{2}}=10 \ldots$ (i)
$\left(a+\frac{1}{2 a}\right)^{2}=a^{2}+\frac{1}{4 a^{2}}+1=11$
$a+\frac{1}{2 a}=\sqrt{11}$
$\mathrm{a}^{2}-\frac{1}{4 \mathrm{a}^{2}}=3 \sqrt{11}$
$\left(\mathrm{a}^{2}+\frac{1}{4 \mathrm{a}^{2}}\right)\left(\mathrm{a}^{2}-\frac{1}{4 \mathrm{a}^{2}}\right)=30 \sqrt{11}$
98. (b) Given,
$x+y+z=14$
Squaring both sides, we get
$x^{2}+y^{2}+z^{2}+2(x y+y z+z x)=196$
$\Rightarrow 28+2(\mathrm{xy}+\mathrm{yz}+\mathrm{zx})=196$
$\Rightarrow 2\left(r+r^{2}+r^{3}\right)=168$
$\Rightarrow \mathrm{r}+\mathrm{r}^{2}+\mathrm{r}^{3}=84$
$\Rightarrow \mathrm{r}+\mathrm{r}^{2}+\mathrm{r}^{3}=4+16+64$
$\Rightarrow \mathrm{r}=4$
$\therefore \mathrm{xy}=4$ and $\mathrm{xz}=16$
$\frac{x z}{x y}=\frac{16}{4}$
$\Rightarrow \frac{\mathrm{z}}{\mathrm{y}}=4$
99. (a) Let the initial investment of A and B is 18 x \& 7x respectively.
According to the question.
$\Rightarrow((18 x \times 12)+16000) /((7 x \times 12)+56000)=2 / 1$
$\mathrm{x}=2000$
Total initial investment of A and B
$=(18+7) \times 2000=$ Rs. 50000
100. (b) $P=M-D-\frac{M D}{100}$
$25=M-20-\frac{20 M}{100}$
खुাঙ্িির্স
$45=\frac{4 M}{5}$
$\mathrm{M}=\frac{225}{4} \%$
$25 \% \rightarrow 6000$
$100 \% \rightarrow 24000$ Rs.
advertised Price
$=24000+24000 \times \frac{225}{400}$
$=24000+13500$
$=37500$ Rs.
खुण্ভির্ম
